Research Unit FOR 2688 Instabilities, Bifurcations and Migration in Pulsating Flow
Recent publications of the Research Unit
2024
Till Zeugin, Fergal B. Coulter, Utku Gülan, André R. Studart, Markus Holzner In vitro investigation of the blood flow downstream of a 3D-printed aortic valve Scientific Reports, 2024, 14, 1572
DOI: 10.1038/s41598-024-51676-6
Grapical abstract: Schematic of the setup used to study the blood flow downstream of a 3D-printed aortic valve.
×
2023
F. Pelusi, F. Guglietta, M. Sega, O. Aouane, J. Harting A sharp interface approach for wetting dynamics of hydrophobic coated droplets and soft particles Physics of Fluids, 2023, 35, 082126
DOI: 10.1063/5.0160096
Sketch of the wetting dynamics of a generic particle with initial radius R initially placed in contact with a flat wall. The interface is resolved with a 3D triangular mesh.
×
F. Guglietta, F. Pelusi, M. Sega, O. Aouane, J. Harting Suspensions of viscoelastic capsules: effect of membrane viscosity on transient dynamics The Journal of Fluid Mechanics, 2023, 971, A13
DOI: 10.1017/jfm.2023.694
Yazdan Rashidi, Othmane Aouane, Alexis Darras, Thomas John, Jens Harting, Christian Wagner, Steffen M. Recktenwald Cell-free layer development and spatial organization of healthy and rigid red blood cells in a microfluidic bifurcation Soft Matter, 2023, 19, 6255-6266
DOI: 10.1039/D3SM00517H
Grapical abstract: cell free layers develop differently for cells with various rigidities.
×
Steffen M. Recktenwald, Katharina Graessel, Yazdan Rashidi, Jann Niklas Steuer, Thomas John, Stephan Gekle, and Christian Wagner Cell-free layer of red blood cells in a constricted microfluidic channel under steady and time-dependent flow conditions Phys. Rev. Fluids, 2023, 8, 074202
DOI: 10.1103/PhysRevFluids.8.074202
Top view (left) and front view (right) of the microfluidic constriction.
×
Mohammed Nouaman, Alexis Darras, Thomas John, Greta Simionato, Minke A. E. Rab,Richard van Wijk, Matthias W. Laschke, Lars Kaestner, Christian Wagner, Steffen M. Recktenwald Effect of Cell Age and Membrane Rigidity on Red Blood Cell Shape in Capillary Flow Cells , 2023, 12(11), 1529
DOI: 10.3390/cells12111529
Images of RBC shapes in confined flows.
×
Marcelle G.M. Lopes, Steffen M. Recktenwald, Greta Simionato, Hermann Eichler, Christian Wagner, Stephan Quint, Lars Kaestner Big Data in Transfusion Medicine and Artificial Intelligence Analysis for Red Blood Cell Quality Control Transfus Med Hemother , 2023, 50(3), 163-173
DOI: 10.1159/000530458
Schematic overview of big data in transfusion medicine. The Matryoshka-structured rectangles represent the concept of this review.
×
Laura Hertz, Daniel Flormann, Lutz Birnbaumer, Christian Wagner, Matthias W. Laschke, and Lars Kaestner Evidence of in vivo exogen protein uptake by red blood cells: a putative therapeutic concept Blood Advances , 2023, 7, 1033–1039
DOI: 10.1182/bloodadvances.2022008404
Mechanical red blood cell interactions enable intercellular protein transfer.
×
2022
O. Aouane, M. Sega, B. Bäuerlein, K. Avila, J. Harting Inertial focusing of a dilute suspension in pipe flow Physics of Fluids, 2022, 34, 113312
DOI: 10.1063/5.0111680
Particle steady-state distribution over the pipe cross section, for Re = 38.
×
Steffen M. Recktenwald, Greta Simionato, Marcelle G.M. Lopes, Fabia Gamboni, Monika Dzieciatkowska, Patrick Meybohm, Kai Zacharowski, Andreas von Knethen, Christian Wagner, Lars Kaestner, Angelo D'Alessandro, and Stephan Quint Cross-talk between red blood cells and plasma influences blood flow and omics phenotypes in severe COVID-19 eLife , 2022, 11, 1–17
DOI: 10.7554/eLife.81316
Pathological RBC shapes found in COVID-19 patients during microcapillary flow.
×
Daniel Morón, Daniel Feldmann, and Marc Avila Effect of waveform on turbulence transition in pulsatile pipe flow J. Fluid Mech. , 2022, 948, A20
DOI: 10.1017/jfm.2022.681
Colour map and isosurfaces of positive (blue) and negative (vermillion) axial vorticity ωz of the optimal helical perturbation of a pulsatile flow driven with a sine wave pulsation.
×
Moritz Lehmann, Mathias J. Krause, Giorgio Amati, Marcello Sega, Jens Harting, and Stephan Gekle Accuracy and performance of the lattice Boltzmann method with 64-bit, 32-bit, and customized 16-bit number formats Phys. Rev. E , 2022, 106, 015308
DOI: 10.1103/PhysRevE.106.015308
Roofline model analysis of FluidX3D with the D3Q19 velocity set, running on an Nvidia Titan Xp GPU.
×
Felix Maurer, Thomas John, Asya Makhro, Anna Bogdanova, Giampaolo Minetti, Christian Wagner, and Lars Kaestner Continuous Percoll Gradient Centrifugation of Erythrocytes—Explanation of Cellular Bands and Compromised Age Separation Cells , 2022, 11, 1296
DOI: 10.3390/cells11081296
Density gradient measurements of Percoll medium.
×
Steffen M. Recktenwald, Marcelle G. M. Lopes, Stephana Peter, Sebastian Hof, Greta Simionato, Kevin Peikert, Andreas Hermann, Adrian Danek, Kai van Bentum, Hermann Eichler, Christian Wagner, Stephan Quint, and Lars Kaestner Erysense, a Lab-on-a-Chip-Based Point-of-Care Device to Evaluate Red Blood Cell Flow Properties With Multiple Clinical Applications Front. Physiol. , 2022, 13, 1-10
DOI: 10.3389/fphys.2022.884690
Erysense® device and principle of measurement.
×
Greta Simionato, Antonia Rabe, Joan Sebastián Gallego-Murillo, Carmen van der Zwaan, Arie Johan Hoogendijk, Maartje van den Biggelaar, Giampaolo Minetti, Anna Bogdanova, Heimo Mairbäurl, Christian Wagner, Lars Kaestner, and Emile van den Akker In Vitro Erythropoiesis at Different pO2 Induces Adaptations That Are Independent of Prior Systemic Exposure to Hypoxia Cells , 2022, 11, 1082
DOI: 10.3390/cells11071082
Hemoglobin expression is increased at onset of erythroblast differentiation with a changed globin composition.
×
Daniel Flormann, Min Qiao, Nicoletta Murciano, Giulia Iacono, Alexis Darras, Sebastian Hof, Steffen M. Recktenwald, Maria Giustina Rotordam, Nadine Becker, Jürgen Geisel, Christian Wagner, Marieke von Lindern, Emile van den Akker, and Lars Kaestner Transient receptor potential channel vanilloid type 2 in red cells of cannabis consumer Am J Hematol. , 2022,
DOI: 10.1002/ajh.26509
Confocal images of RBCs stained deep red with cell mask.
×
Mattia Cenedese, Joar Axås, Bastian Bäuerlein, Kerstin Avila, and George Haller Data-driven modeling and prediction of non-linearizable dynamics via spectral submanifolds Nat Commun , 2022, 13 872
DOI: 10.1038/s41467-022-28518-y
Data-driven nonlinear reduced-order model on the slowest SSM of fluid sloshing in a tank.
×
Alexis Darras, Anil Kumar Dasanna, Thomas John, Gerhard Gompper, Lars Kaestner, Dmitry A. Fedosov, and Christian Wagner Erythrocyte Sedimentation: Collapse of a High-Volume-Fraction Soft-Particle Gel Phys. Rev. Lett. , 2022, 128, 088101
DOI: 10.1103/PhysRevLett.128.088101
Measurements of relative height reduction of the dense erythrocyte suspension.
×
Anil Kumar Dasanna, Alexis Darras, Thomas John, Gerhard Gompper, Lars Kaestner, Christian Wagner, and Dmitry A. Fedosov Erythrocyte sedimentation: Effect of aggregation energy on gel structure during collapse Phys. Rev. E , 2022, 105, 024610
DOI: 10.1103/PhysRevE.105.024610
Cuvettes containing blood samples with various levels of fibrinogen are shown after 2 hours at rest.
×
Alexis Darras, Hans Georg Breunig, Thomas John, Renping Zhao, Johannes Koch, Carsten Kummerow, Karsten König, Christian Wagner, and Lars Kaestner Imaging Erythrocyte Sedimentation in Whole Blood Front. Physiol. , 2022, 12, 729191
DOI: 10.3389/fphys.2021.729191
Light-sheet microscopy.
×
Steffen M. Recktenwald, Katharina Graessel, Felix M. Maurer, Thomas John, Stephan Gekle, and Christian Wagner Red blood cell shape transitions and dynamics in time-dependent capillary flows Biophys. J , 2022, 121, 23-36
DOI: 10.1016/j.bpj.2021.12.009
Dynamics of single RBCs in time-dependent flows for an experiment and a simulation.
×
2021
Greta Simionato, Konrad Hinkelmann, Revaz Chachanidze, Paola Bianchi, Elisa Fermo, Richard van Wijk, Marc Leonetti, Christian Wagner, Lars Kaestner, and Stephan Quint Red blood cell phenotyping from 3D confocal images using artificial neural networks PLoS Comput Biol, 2021, 17, e1008934
DOI: 10.1371/journal.pcbi.1008934
Workflow for automatic classification by the dual-stage ANN.
×
George H. Choueiri, Jose M. Lopez, Atul Varshney, Sarath Sankar, and Björn Hof Experimental observation of the origin and structure of elastoinertial turbulence PNAS, 2021, 118, e2102350118
DOI: 10.1073/pnas.2102350118
Fluctuations level and flow structure near the onset of elastoinertial instability.
×
Clément Bielinski, Othmane Aouane, Jens Harting, and Badr Kaoui Squeezing multiple soft particles into a constriction: Transition to cloggings Phys. Rev. E , 2021, 104, 065101
DOI: 10.1103/PhysRevE.104.065101
Numerical setup used to study the flow of capsules.
×
M. Wouters, O. Aouane, M. Sega, and J. Harting Lattice Boltzmann simulations of drying suspensions of soft particles Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. , 2021, 379, 20200399
DOI: 10.1098/rsta.2020.0399
Snapshot of a simulation of 4806 particles.
×
Evgeny S. Asmolov, Tatiana V. Nizkaya1, Jens Harting, and Olga I. Vinogradova Instability of particle inertial migration in shear flow Phys. Fluids , 2021, 33, 092008
DOI: 10.1063/5.0063566
Sketch of the particle motion in a shear flow.
×
Daniel Feldmann, Daniel Morón, and Marc Avila Spatiotemporal Intermittency in Pulsatile Pipe Flow Entropy, 2021, 23, 46
DOI: 10.3390/e23010046
Instantaneous representation of localised turbulent structures in a pulsatile pipe flow.
×
Steffen M. Recktenwald, Christian Wagner, and Thomas John Optimizing pressure-driven pulsatile flows in microfluidic devices Lab Chip, 2021, 14, 4680-4687
DOI: 10.1039/D0LC01297A
Schematic representation of the microfluidic setup and the effect of the optimization approach.
×
Alexis Darras, Kevin Peikert, Antonia Rabe, François Yaya, Greta Simionato, Thomas John, Anil Kumar Dasanna, Semen Buvalyy, Jürgen Geisel, Andreas Hermann, Dmitry A. Fedosov, Adrian Danek, Christian Wagner, and Lars Kaestner Acanthocyte Sedimentation Rate as a Diagnostic Biomarker for Neuroacanthocytosis Syndromes: Experimental Evidence and Physical Justification Cells, 2021, 10, 788
DOI: 10.3390/cells10040788
Comparison of the erythrocyte sedimentation rate (ESR) between neuroacanthocytosis patients and healthy controls.
×
Christian Bächer, Diana Khoromskaia, Guillaume Salbreux, and Stephan Gekle A Three-Dimensional Numerical Model of an Active Cell Cortex in the Viscous Limit Front. Phys., 2021, 9, 753230
DOI: 10.3389/fphy.2021.753230
Dynamically deforming viscous active cortex.
×
Antonia Rabe, Alexander Kihm, Alexis Darras, Kevin Peikert, Greta Simionato,
Anil Kumar Dasanna, Hannes Glaß, Jürgen Geisel, Stephan Quint, Adrian Danek,
Christian Wagner, Dmitry A. Fedosov, Andreas Hermann, and Lars Kaestner The Erythrocyte Sedimentation Rate and Its Relation to Cell Shape and Rigidity of Red Blood Cells from Chorea-Acanthocytosis Patients in an Off-Label Treatment with Dasatinib Biomolecules, 2021, 11, 727
DOI: 10.3390/biom11050727
Measurements of the ESR with the standard Westergren method using EDTA blood.
×
Pascal Corso, Jonas Walheim, Hannes Dillinger, George Giannakopoulos, Utku Gülan, Christos Emmanouil Frouzakis, Sebastian Kozerke, and Markus Holzner Toward an accurate estimation of wall shear stress from 4D flow magnetic resonance downstream of a severe stenosis Magn Reson Med., 2021, 00, 1– 13
DOI: 10.1002/mrm.28795
Magnitude of wall shear stress from the posterior view.
×
Greta Simionato, Richard van Wijk, Stephan Quint, Christian Wagner, Paola Bianchi, and Lars Kaestner Rare Anemias: Are Their Names Just Smoke and Mirrors? Front. Physiol., 2021, 12, 690604
DOI: 10.3389/fphys.2021.690604
Investigation of hereditary spherocytosis red blood cell shapes.
×
Othmane Aouane, Andrea Scagliarini, and Jens Harting Structure and rheology of suspensions of spherical strain-hardening capsules J. Fluid Mech., 2021, 911, A11
DOI: 10.1017/jfm.2020.1040
Relative viscosity as a function of the effective volume fraction. The dashed and dotted lines corresponds to fits of the numerical data.
×
François Yaya, Johannes Römer, Achim Guckenberger, Thomas John, Stephan Gekle, Thomas Podgorski, and Christian Wagner Vortical Flow Structures Induced by Red Blood Cells in Capillaries Microcirculation, 2021, 28 e12693
DOI: 10.1111/micc.12693
3D view showing the provenance (blue arrow) of the tracers and their trajectories for a cell velocity of 2.2 mm/s.
×
Bastian Bäuerlein, and Kerstin Avila Phase lag predicts nonlinear response maxima in liquid-sloshing experiments J. Fluid Mech., 2021, 925 A22
DOI: 10.1017/jfm.2021.576
Sketch of the liquid-sloshing experiment.
×
Alexander Kihm, Stephan Quint, Matthias W. Laschke, Michael D. Menger, Thomas John, Lars Kaestner, and Christian Wagner Lingering Dynamics in Microvascular Blood Flow Biophysj, 2021, 4, 1-8
DOI: 10.1016/j.bpj.2020.12.012
Probability density functions of scaled void durations for all branches if only lingering events are taken into account. The inset graph shows both the probability densities in the case of lingering and nonlingering, respectively to represent extreme cases of the median shift.
×
Julie Martin-Wortham, Steffen M. Recktenwald, Marcelle G. M. Lopes, Lars Kaestner, Christian Wagner, and Stephan Quint A deep learning-based concept for high throughput image flow cytometry Appl. Phys. Lett., 2021, 118, 123701
DOI: 10.1063/5.0037336
Single cells in a microfluidic channel are passing the optical detection zone.
×
Duo Xu, Baofang Song, and Marc Avila Non-modal transient growth of disturbances in pulsatile and oscillatory pipe flows J. Fluid Mech., 2021, 907, R5
DOI: 10.1017/jfm.2020.940
Contours of stream-wise vorticity (on an r-θ cross-section) of the helical disturbance at t0/T = 0.5.
×
Katharina Graessel, Christian Bächer, and Stephan Gekle Rayleigh–Plateau instability of anisotropic interfaces. Part 1. An analytical and numerical study of fluid interfaces J. Fluid Mech,, 2021, 910, A46
DOI: 10.1017/jfm.2020.947
Illustration of the set-up; Rayleigh–Plateau instability.
×
2020
Maarten Wouters, Othmane Aouane, Marcello Sega, and Jens Harting Capillary interactions between soft capsules protruding through thin fluid films Soft Matter, 2020, 16, 10910–10920
DOI: 10.1039/d0sm01385d
Time evolution of the gap between two soft particles: (solid line) β = 10, (dashed line) β = 25, (dot-dashed line) β = 50. The grey area indicates the repulsive region.
×
Moritz Lehmann, Sebastian Johannes Müller, and Stephan Gekle Efficient viscosity contrast calculation for blood flow simulations using the lattice Boltzmann method Int. J. Numer. Methods Fluids, 2020, 92, 1463–1477
DOI: 10.1002/fld.4835
The center of mass radial displacement averaged over the last 0.2 seconds for different values of 𝜆.
×
Duo Xu, Matthias Heil, Thomas Seeböck, and Marc Avila Resonances in Pulsatile Channel Flow with an Elastic Wall Phys. Rev. Lett., 2020, 125, 254501
DOI: 10.1103/PhysRevLett.125.254501
(a),(b) Sketch of the model. (c) Oscillation amplitude, where the solid and the dashed lines denote the viscous and the inviscid prediction, and black and blue correspond to β = 0.25 and β = 0. The black symbols show the results from the simulations. The dotted lines mark the corresponding eigenfrequencies.
×
Tatiana V. Nizkaya, Evgeny S. Asmolov, Jens Harting, and Olga I. Vinogradova Inertial migration of neutrally buoyant particles in superhydrophobic channels Phys. Rev. Fluids, 2020, 5, 014201
DOI: 10.1103/PhysRevFluids.5.014201
Sketch of the system: side (a) and top (b) views, with a schematic of vertical and transverse migration.
×
Tatiana V. Nizkaya1, Anna S. Gekova, Jens Harting, Evgeny S. Asmolov, and Olga I. Vinogradova Inertial migration of oblate spheroids in a plane channel Phys. Fluids, 2020, 32, 112017
DOI: 10.1063/5.0028353
An oblate spheroid orienting in a pressure-driven flow to perform a stable log-rolling state.
×
Duo Xu, Atul Varshney, Xingyu Ma, Baofang Song, Michael Riedl, Marc Avila, and Björn Hof Nonlinear hydrodynamic instability and turbulence in pulsatile flow PNAS, 2020, 117, 11233–11239
DOI: 10.1073/pnas.1913716117
Visualization of the numerical simulation of a turbulent blood stream.
×
Asena Abay, Steffen M. Recktenwald, Thomas John, Lars Kaestner, and Christian Wagner Cross-sectional focusing of red blood cells in a constricted microfluidic channel Soft Matter, 2020,16, 534-543
DOI: 10.1039/C9SM01740B
Schematic representation of red blood cells flowing through a contraction–expansion microfluidic device.
×
Latest modification is made on 10-08-2024. Contact the web admin .